skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kellogg, Kevin_M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Much confusion exists on whether force‐ or energy‐based descriptions of cohesive‐particle interactions are more appropriate. We hypothesize a force‐based description is appropriate when enduring‐contacts dominate and an energy‐based description when contacts are brief in nature. Specifically, momentum is transferred through force‐chains when enduring‐contacts dominate and particles need to overcome a cohesive force to induce relative motion, whereas particles experiencing brief contacts transfer momentum through collisions and must overcome cohesion‐enhanced energy losses to avoid agglomeration. This hypothesis is tested via an attempt to collapse the dimensionless, dependent variable characterizing a given system against two dimensionless numbers: A generalized bond number, BoG–ratio of maximum cohesive force to the force driving flow, and a new Agglomerate number, Ag–ratio of critical cohesive energy to the granular energy. A gamut of experimental and simulation systems (fluidized bed, hopper, etc.), and cohesion sources (van der Waals, humidity, etc.), are considered. For enduring‐contact systems, collapse occurs with BoGbut not Ag, and vice versa for brief‐contact systems, thereby providing support for the hypothesis. An apparent discrepancy with past work is resolved, and new insight into Geldart's classification is gleaned. 
    more » « less